This helper takes the object returned by fit_bt_model and
returns a tibble with one row per object (e.g., writing sample), including:
ID: object identifiertheta: estimated ability parameterse: standard error ofthetarank: rank order oftheta(1 = highest by default)engine: modeling engine used ("sirt" or "BradleyTerry2")reliability: MLE reliability (for sirt) orNA
Arguments
- fit
A list returned by
fit_bt_model.- decreasing
Logical; should higher
thetavalues receive lower rank numbers? IfTRUE(default), the highestthetagetsrank = 1.- verbose
Logical. If
TRUE(default), emit warnings when coercing. IfFALSE, suppress coercion warnings during ranking.
Value
A tibble with columns:
- ID
Object identifier.
- theta
Estimated ability parameter.
- se
Standard error of
theta.- rank
Rank of
theta; 1 = highest (ifdecreasing = TRUE).- engine
Modeling engine used ("sirt" or "BradleyTerry2").
- reliability
MLE reliability (numeric scalar) repeated on each row.
Examples
# Example using built-in comparison data
data("example_writing_pairs")
bt <- build_bt_data(example_writing_pairs)
fit1 <- fit_bt_model(bt, engine = "sirt")
#> Warning: NAs introduced by coercion
#> **** Iteration 1 | Maximum parameter change=0.9874205
#> **** Iteration 2 | Maximum parameter change=0.9604
#> **** Iteration 3 | Maximum parameter change=0.941192
#> **** Iteration 4 | Maximum parameter change=0.9223682
#> **** Iteration 5 | Maximum parameter change=0.9039208
#> **** Iteration 6 | Maximum parameter change=0.8858424
#> **** Iteration 7 | Maximum parameter change=0.8681255
#> **** Iteration 8 | Maximum parameter change=0.850763
#> **** Iteration 9 | Maximum parameter change=0.8337478
#> **** Iteration 10 | Maximum parameter change=0.8170728
#> **** Iteration 11 | Maximum parameter change=0.8007314
#> **** Iteration 12 | Maximum parameter change=0.7847167
#> **** Iteration 13 | Maximum parameter change=0.7690224
#> **** Iteration 14 | Maximum parameter change=0.7536419
#> **** Iteration 15 | Maximum parameter change=0.7385691
#> **** Iteration 16 | Maximum parameter change=0.7237977
#> **** Iteration 17 | Maximum parameter change=0.7093218
#> **** Iteration 18 | Maximum parameter change=0.6951353
#> **** Iteration 19 | Maximum parameter change=0.6812326
#> **** Iteration 20 | Maximum parameter change=0.667608
#> **** Iteration 21 | Maximum parameter change=0.6542558
#> **** Iteration 22 | Maximum parameter change=0.6411707
#> **** Iteration 23 | Maximum parameter change=0.6283473
#> **** Iteration 24 | Maximum parameter change=0.6157803
#> **** Iteration 25 | Maximum parameter change=0.6034647
#> **** Iteration 26 | Maximum parameter change=0.5913954
#> **** Iteration 27 | Maximum parameter change=0.5795675
#> **** Iteration 28 | Maximum parameter change=0.5679762
#> **** Iteration 29 | Maximum parameter change=0.5566167
#> **** Iteration 30 | Maximum parameter change=0.5454843
#> **** Iteration 31 | Maximum parameter change=0.5345746
#> **** Iteration 32 | Maximum parameter change=0.5238831
#> **** Iteration 33 | Maximum parameter change=0.5134055
#> **** Iteration 34 | Maximum parameter change=0.5031374
#> **** Iteration 35 | Maximum parameter change=0.4930746
#> **** Iteration 36 | Maximum parameter change=0.4832131
#> **** Iteration 37 | Maximum parameter change=0.4735489
#> **** Iteration 38 | Maximum parameter change=0.4640779
#> **** Iteration 39 | Maximum parameter change=0.4547963
#> **** Iteration 40 | Maximum parameter change=0.4457004
#> **** Iteration 41 | Maximum parameter change=0.4367864
#> **** Iteration 42 | Maximum parameter change=0.4280507
#> **** Iteration 43 | Maximum parameter change=0.4194897
#> **** Iteration 44 | Maximum parameter change=0.4110999
#> **** Iteration 45 | Maximum parameter change=0.4028779
#> **** Iteration 46 | Maximum parameter change=0.3948203
#> **** Iteration 47 | Maximum parameter change=0.3869239
#> **** Iteration 48 | Maximum parameter change=0.3791854
#> **** Iteration 49 | Maximum parameter change=0.3716017
#> **** Iteration 50 | Maximum parameter change=0.3641697
#> **** Iteration 51 | Maximum parameter change=0.3568863
#> **** Iteration 52 | Maximum parameter change=0.3497486
#> **** Iteration 53 | Maximum parameter change=0.3427536
#> **** Iteration 54 | Maximum parameter change=0.3358985
#> **** Iteration 55 | Maximum parameter change=0.3291805
#> **** Iteration 56 | Maximum parameter change=0.3225969
#> **** Iteration 57 | Maximum parameter change=0.316145
#> **** Iteration 58 | Maximum parameter change=0.3098221
#> **** Iteration 59 | Maximum parameter change=0.3036257
#> **** Iteration 60 | Maximum parameter change=0.2975531
#> **** Iteration 61 | Maximum parameter change=0.2916021
#> **** Iteration 62 | Maximum parameter change=0.28577
#> **** Iteration 63 | Maximum parameter change=0.2800546
#> **** Iteration 64 | Maximum parameter change=0.2744535
#> **** Iteration 65 | Maximum parameter change=0.2689645
#> **** Iteration 66 | Maximum parameter change=0.2635852
#> **** Iteration 67 | Maximum parameter change=0.2583135
#> **** Iteration 68 | Maximum parameter change=0.2531472
#> **** Iteration 69 | Maximum parameter change=0.2480843
#> **** Iteration 70 | Maximum parameter change=0.2431226
#> **** Iteration 71 | Maximum parameter change=0.2382601
#> **** Iteration 72 | Maximum parameter change=0.2334949
#> **** Iteration 73 | Maximum parameter change=0.228825
#> **** Iteration 74 | Maximum parameter change=0.2242485
#> **** Iteration 75 | Maximum parameter change=0.2197636
#> **** Iteration 76 | Maximum parameter change=0.2153683
#> **** Iteration 77 | Maximum parameter change=0.2110609
#> **** Iteration 78 | Maximum parameter change=0.2068397
#> **** Iteration 79 | Maximum parameter change=0.2027029
#> **** Iteration 80 | Maximum parameter change=0.1986489
#> **** Iteration 81 | Maximum parameter change=0.1946759
#> **** Iteration 82 | Maximum parameter change=0.1907824
#> **** Iteration 83 | Maximum parameter change=0.1869667
#> **** Iteration 84 | Maximum parameter change=0.1832274
#> **** Iteration 85 | Maximum parameter change=0.1795628
#> **** Iteration 86 | Maximum parameter change=0.1759716
#> **** Iteration 87 | Maximum parameter change=0.1724521
#> **** Iteration 88 | Maximum parameter change=0.1690031
#> **** Iteration 89 | Maximum parameter change=0.165623
#> **** Iteration 90 | Maximum parameter change=0.1623106
#> **** Iteration 91 | Maximum parameter change=0.1590644
#> **** Iteration 92 | Maximum parameter change=0.1558831
#> **** Iteration 93 | Maximum parameter change=0.1527654
#> **** Iteration 94 | Maximum parameter change=0.1497101
#> **** Iteration 95 | Maximum parameter change=0.1467159
#> **** Iteration 96 | Maximum parameter change=0.1437816
#> **** Iteration 97 | Maximum parameter change=0.140906
#> **** Iteration 98 | Maximum parameter change=0.1380878
#> **** Iteration 99 | Maximum parameter change=0.1353261
#> **** Iteration 100 | Maximum parameter change=0.1326196
fit2 <- fit_bt_model(bt, engine = "BradleyTerry2")
summarize_bt_fit(fit1)
#> Warning: NAs introduced by coercion
#> # A tibble: 20 × 6
#> ID theta se rank engine reliability
#> <chr> <dbl> <dbl> <int> <chr> <dbl>
#> 1 S18 2.88 1.16 1 sirt 0.622
#> 2 S20 1.73 0.985 3 sirt 0.622
#> 3 S19 0.865 0.772 7 sirt 0.622
#> 4 S17 0.900 0.833 6 sirt 0.622
#> 5 S13 1.91 0.794 2 sirt 0.622
#> 6 S15 1.12 0.842 4 sirt 0.622
#> 7 S16 0.711 0.805 8 sirt 0.622
#> 8 S14 0.921 0.836 5 sirt 0.622
#> 9 S11 0.185 0.851 11 sirt 0.622
#> 10 S12 -0.239 0.826 13 sirt 0.622
#> 11 S09 0.402 0.819 9 sirt 0.622
#> 12 S10 -0.0193 0.853 12 sirt 0.622
#> 13 S08 0.206 0.849 10 sirt 0.622
#> 14 S07 -0.776 0.984 14 sirt 0.622
#> 15 S06 -1.05 1.01 16 sirt 0.622
#> 16 S05 -1.33 1.04 17 sirt 0.622
#> 17 S02 -0.919 0.810 15 sirt 0.622
#> 18 S04 -2.66 1.12 19 sirt 0.622
#> 19 S01 -1.85 1.01 18 sirt 0.622
#> 20 S03 -3.00 1.16 20 sirt 0.622
summarize_bt_fit(fit2)
#> Warning: NAs introduced by coercion
#> # A tibble: 20 × 6
#> ID theta se rank engine reliability
#> <chr> <dbl> <dbl> <int> <chr> <dbl>
#> 1 S01 0 0 20 BradleyTerry2 NA
#> 2 S02 1.90e+ 0 1.58 17 BradleyTerry2 NA
#> 3 S03 6.93e-17 1.49 19 BradleyTerry2 NA
#> 4 S04 9.94e- 1 1.48 18 BradleyTerry2 NA
#> 5 S05 2.79e+ 0 1.71 16 BradleyTerry2 NA
#> 6 S06 3.68e+ 0 1.83 15 BradleyTerry2 NA
#> 7 S07 4.54e+ 0 1.93 14 BradleyTerry2 NA
#> 8 S08 6.04e+ 0 2.05 13 BradleyTerry2 NA
#> 9 S09 6.66e+ 0 2.08 11 BradleyTerry2 NA
#> 10 S10 6.66e+ 0 2.08 12 BradleyTerry2 NA
#> 11 S11 7.25e+ 0 2.10 9 BradleyTerry2 NA
#> 12 S12 7.25e+ 0 2.10 10 BradleyTerry2 NA
#> 13 S13 9.48e+ 0 2.19 7 BradleyTerry2 NA
#> 14 S14 8.93e+ 0 2.17 8 BradleyTerry2 NA
#> 15 S15 9.48e+ 0 2.19 5 BradleyTerry2 NA
#> 16 S16 9.48e+ 0 2.19 6 BradleyTerry2 NA
#> 17 S17 1.00e+ 1 2.22 4 BradleyTerry2 NA
#> 18 S18 1.23e+ 1 2.45 1 BradleyTerry2 NA
#> 19 S19 1.06e+ 1 2.26 3 BradleyTerry2 NA
#> 20 S20 1.23e+ 1 2.45 2 BradleyTerry2 NA