Build OpenAI batch JSONL lines for paired comparisons
Source:R/openai_batch_api.R
build_openai_batch_requests.RdThis helper constructs one JSON object per pair of writing samples,
suitable for use with the OpenAI batch API. It supports both
/v1/chat/completions and /v1/responses endpoints.
Usage
build_openai_batch_requests(
pairs,
model,
trait_name,
trait_description,
prompt_template = set_prompt_template(),
endpoint = c("chat.completions", "responses"),
temperature = NULL,
top_p = NULL,
logprobs = NULL,
reasoning = NULL,
include_thoughts = FALSE,
request_id_prefix = "EXP"
)Arguments
- pairs
A data frame or tibble with columns
ID1,text1,ID2, andtext2.- model
Character scalar giving the OpenAI model name. Supports standard names (e.g.
"gpt-4.1") and date-stamped versions (e.g."gpt-5.2-2025-12-11").- trait_name
Short label for the trait (e.g., "Overall Quality").
- trait_description
Full-text definition of the trait.
- prompt_template
Character template containing the placeholders
{TRAIT_NAME},{TRAIT_DESCRIPTION},{SAMPLE_1}, and{SAMPLE_2}. Defaults toset_prompt_template().- endpoint
Which OpenAI endpoint to target. One of
"chat.completions"(default) or"responses".- temperature
Optional temperature parameter. Defaults to
0for standard models (deterministic). Must beNULLfor reasoning models (enabled).- top_p
Optional top_p parameter.
- logprobs
Optional logprobs parameter.
- reasoning
Optional reasoning effort for
gpt-5.1/5.2when using the/v1/responsesendpoint. Typically"none","low","medium", or"high".- include_thoughts
Logical; if TRUE and using
responsesendpoint with reasoning, requests a summary. Defaultsreasoningto"low"for gpt-5.1/5.2 if not specified.- request_id_prefix
String prefix for
custom_id; the full ID takes the form"<prefix>_<ID1>_vs_<ID2>".
Value
A tibble with one row per pair and columns:
custom_id: ID string used by the batch API.method: HTTP method ("POST").url: Endpoint path ("/v1/chat/completions"or"/v1/responses").body: List column containing the request body.
Examples
if (FALSE) { # \dontrun{
# Requires OPENAI_API_KEY and network access.
library(pairwiseLLM)
data("example_writing_samples", package = "pairwiseLLM")
pairs <- example_writing_samples |>
make_pairs() |>
sample_pairs(n_pairs = 3, seed = 123) |>
randomize_pair_order(seed = 456)
td <- trait_description("overall_quality")
tmpl <- set_prompt_template()
# 1. Basic chat.completions batch with no thoughts
batch_tbl_chat <- build_openai_batch_requests(
pairs = pairs,
model = "gpt-4.1",
trait_name = td$name,
trait_description = td$description,
prompt_template = tmpl,
endpoint = "chat.completions",
temperature = 0
)
# 2. GPT-5.2-2025-12-11 Responses Batch with Reasoning
batch_resp <- build_openai_batch_requests(
pairs = pairs,
model = "gpt-5.2-2025-12-11",
trait_name = td$name,
trait_description = td$description,
prompt_template = tmpl,
endpoint = "responses",
include_thoughts = TRUE, # implies reasoning="low" if not set
reasoning = "medium"
)
batch_tbl_chat
batch_tbl_resp
} # }